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Abstract - Arrays  of  voltage-controlled  oscillators  coupled  to  nearest  neighbors  have been 
proposed as a means of controlling  the  aperture  phase  of  one  and  two-dimensional  phased 
array  antennas.  It  has been demonstrated,  both  theoretically  and  experimentally,  that  one 
may  achieve  linear  distributions  of  phase  across  a linear array  aperture  by tuning the  end 
oscillators of the  array  away  from  the  ensemble  frequency  of a mutually  injection-locked 
array  of  oscillators.  These  linear  distributions  result in steering of  the  radiated  beam. It  is 
demonstrated  theoretically  here  that  one may  achieve  similar beam steering in two dimensions 
by  appropriately tuning the  perimeter  oscillators of a  two-dimensional  array.  The  analysis is 
based on a  continuum  representation  of  the  phase  in  which  a  continuous  function,  satisfying  a 
partial  differential  equation  of  diffusion type, passes  through  the  phase of each  oscillator as its 
independent  variables  pass  through  integer  values  indexing  the  oscillators.  Solutions of the 
partial  differential  equation  for  the  phase  function exhibit the  dynamic  behavior  of  the  array 
during  the beam steering  transient. &t,ex*h# ?k+& 7 
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I.  INTRODUCTION 

Some  years  ago,  Liao  and  York [ I ]  proposed  an  approach to phased array beam steering 
which requires no  phase  shifters.  This  involves  the  use of a  linear  array of voltage- 
controlled  electronic  oscillators  coupled to nearest  neighbors.  The  oscillators  are  mutually 
injection  locked by controlling  their  coupling and  tuning  appropriately.  It  was  shown  that 
the ensemble  fiequency  of  the  array  is  equal to the  average of the  free  running  frequencies 
of  the  oscillators. When all of the  free  running  frequencies  are  equal,  the  oscillators  will 
oscillate in phase  which  each other if the  coupling  phase  is  chosen  correctly.[2]  Thus,  if 
radiating  elements are connected to each  oscillator  and  spaced  uniformly  along a line,  they 
will radiate  a beam  normal to the  line.  The  key  result is that, if the free running 
frequencies of the end oscillators of the  array  are  antisymmetricaliy  detuned  away  from  the 
ensemble  frequency by  applying appropriate  voltages to their  tuning  ports,  a  linear  phase 
distribution  is  established  and  the  radiated  beam  is  steered away from  the  normal to the 
array. Only the end oscillators need  be  detuned and the  steering  angle  is  dependent  on  the 
amount by which  they are detuned. 



Recently,  Pogorzelski  and York presented a formulation  which  facilitates  theoretical 
analysis  of  the  above  beam  steering  technique.[3][4] It is  based  on a  continuum  model in 
which the  oscillator  phases  are  represented in terms of a  continuous  function  satisfjmg  a 
partial differential  equation  of  diffusion  type. This function  depends  both  on  time  and  on 
an independent  variable  which,  upon  taking  on  integer  values,  indexes  the  oscillators.  The 
phase  function  takes  on  the  value  of  the  phase  of  a  given  oscillator  when the independent 
variable  takes  on  the  integer  value  identifjmg  that  oscillator  and  varies  smoothly  between 
integer  values of the  variable.  The  diffusion  equation  governing  the  phase  function  can  be 
solved  via the  Laplace  transform  and  the  resulting  solution  exhibits  the  dynamic  behavior 
of the  array as the beam  is  steered. 

The  above  beam-steering  technique can be  generalized to two-dimensional  arrays  in  which 
the beam control  voltages  are  applied to the  oscillators  on  the  perimeter of the  array.  In 
this  paper  a  continuum  model for the two-dimensional case is  developed  and  the  dynamic 
solution for the corresponding  aperture  phase  function as well as  the  behavior of the 
resulting  far-zone  radiation  pattern are presented. 

II. THE C O N "  MODEL IN TWO DIMENSIONS 

Consider  a 2M+1 by 2N+1 rectangular  array  of  coupled  voltage-controlled  oscillators. By 
applying  Adler's  theory of the  dynamics of injection  locking [SI, it can be  shown  that the 
dynamic  behavior  of  such  an  array  is  governed  by a  system of simultaneous  differential 
equations  which  are  first  order in time.  Specifically, these  governing  equations  are 

where  is  the  free  running  frequency  of  oscillator ij, @cw is the phase  associated 
with  the  coupling  between  oscillators ij and mn in the  array, and A W , ~ ~ ; ~ , ~  is  the  locking 
range  associated  with  that  coupling  and  is  given by 

where a,, is the  amplitude of the  output  signal of the  ij" oscillator, E,,,,,,, sets  the  strength 
of  the  coupling, and Q is  the  quality  factor  of  the  oscillators.  The  phase, eij, is the  phase 
of  the  ij*  oscillator;  that  is, 
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where or~f is the  reference  fiequency  for  defining  the  phase, 4,,, of each oscillator. If  the 
oscillators are coupled  only to nearest  neighbors,  equation ( 1  ) simplifies to 

Taking  the  coupling  phase to be zero and assuming  that  the  phase  differences  between 
adjacent  oscillators are small, the sine  functions may be  replaced by their  arguments.  Then, 
following  the  reasoning  previously used in the one dimensional  case [4], it is noted  that,  if 
all of  the  locking  ranges  are  equal,  equation (4) becomes 

Now, the  quantity in brackets on the  right  side of (5) is seen to be  a  discrete 
approximation to the  Laplacian  operator  in two dimensions.  Indexing  the  oscillators by 
integer  values of continuous  variables x and y,  and representing  the  oscillator  phases by 
the  continuous  function #,y; z), one  arrives  at  the  partial  differential  equation 

for  the  phase  function, #x,y;z), where T is a  dimensionless  time  measured  in  inverse 
locking  ranges;  that  is, 

r = A w , t .  (7) 

A unit  cell one unit square is  associated  with  each  oscillator so that  the  array  extent is 
given by 

- (h f+;)  .xl(M+;) , 

- ( N + i ) < y < ( N + ; )  . 

To derive the boundary  conditions on  the  phase  function,  we  employ a  generalization  of 
an  artifice  previously  presented in connection  with  the one dimensional case. [4] That  is, 
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an additional  set of oscillators is  appended  on  the  perimeter of the  array so that the 
augmented  array  contains (2M+3)(2N+3) oscillators  as  shown in Figure 1 .  Note  that  the 
added  oscillators  are  not  coupled to each other.  These  fictitious  additional  oscillators, 
shown in dashed  lines in the  figure,  are  now  assumed to be  dynamically  tuned (i.e., as a 
function of time) to frequencies  such  that  the  phase of each  fictitious  oscillator  is 
maintained  identical  with  that of its  nearest  neighbor in the original  array.  This  causes  the 
injection  effect  between  these  pairs of oscillators to be  identically  zero  and  thus  simulates 
the absence of the  fictitious  oscillator of each  pair.  Since  the  phase  difference  between 
each  fictitious  oscillator  and  its  nearest  real  neighbor  is  zero,  the  spatial  derivative of the 
phase  given  by  this  difference  is  also zero.  It is  thus  easily  seen  that the desired  boundary 
condition is of Neumann  type  and  may  be  applied at  points  halfway  between  the  fictitious 
oscillators and their  nearest  real  neighbors.  Therefore,  study of the dynamic  behavior of 
the  array is now a matter of solving  equation (6)  subject to Neumann  boundary  conditions 
at x = k(u + 3) and at y = k(b ++) where  a  and b  correspond to index  values  i=M  and 
j=N denoting  the  perimeter  oscillators in the  array. 

The ensemble  frequency  at  which  the  entire  mutually  injection  locked  array  oscillates  can 
be  ascertained  by  averaging  equation (6) over  the  area of the  array.  This  leads to 

The  first two terms on  the left  side are zero by virtue of the Neumann  conditions  on  the 
boundaries of the  array. By definition,  the  frequency, a, is  related to the phase  by 

Averaging (1  0)  and substituting  into (9) leads to 

< 0 >=< om, > 

which  is to say,  the  average  oscillation  frequency of the oscillators is equal to the  average 
of their free running  frequencies.  Moreover,  since in steady state all of the  oscillators 
oscillate  at the same  frequency by virtue of their  mutual  injection  locked status,  the  steady 
state ensemble  fiequency of the  array as a  whole will be  equal to this  average  value of the 
free running  frequencies. 

111. THE  TWO-DIMENSIONAL  RECTANGULAR ARRAY 

Consider a rectangular  array with (2M+ 1 )(2N+ 1 ) oscillators  extending  over  the  range 
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- ( a + i j  , 

Suppose  that  the  oscillator  located  at  (x',y') is detuned  at  time  zero by C locking  ranges 
where C is  less  than  one.  The  source  term  on  the  right  side of (6) is  then 

Substituting (13) into (6)  and  performing a  Laplace  transformation  with  respect to .r yields 
the  partial  differential  equation, 

where g(x,y) is the  Laplace  transform of Kx,y;z) with  respect to r and &k,y;O') is 
assumed to be  zero;  that  is,  it  is  assumed  that  the  oscillators  are initially in  phase  with  each 
other. Note that  the hc t ion  g is the Green's function for the transformed  differential 
equation (14) and  can  be  expressed in a  straightfoxward  manner  in  terms of the 
eigenfimctions of the  differential  operator  satisfjrlng  Neumann  conditions  on the boundary. 
These eigefinctions divide  naturally  into  four  categories  depending  upon  their symmetry 
properties.  They  are 

where  the N's normalize the hnctions and the  boundary  conditions imply that 
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(2k + 1)n 2 

.=-( 2a+,  ) , 

(2t + 1)n 2 2 

2b+1 ' s, = -(E) , 

for  integers, k ,  l ,m, n ranging from zero to infinity. Integrating  the  squares of the 
eigehnctions over  the  area of the  array  provides  the  values of the  normalization 
constants.  They are 

Nee., = -J(k 1 + 1X2b + I)&,&, , 
2 

N , ,  = -11<2u + 1X2b + 1) , 

Neo,mc = - J(h + 1X2b + I)&, , 

1 

2 
1 
2 

N,, = -,/(a 1 + 1X2b + 1 ) ~ "  , 
2 

where 

2; m=O 
1; m#O 

&, = 

is  the well known Neumann factor. Thus, the  normalized  eigenfbnctions  are 

- 1 
Le.m - - cos(%) cos&) , 

J(2u + 1X2b + I)&,&" 

- 1 sin( (2k + I)m ) cos(*) 
= J(2u + 1)(2b + l ) ~ ,  2a+l  2b+ 1 

The  Green's  function, g, can  now  be  expressed in t m s  of these eigehnctions as 
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where 

- a 4sinh(x’&)sinh(y’&)sinh(x&)sinh(y,@ 
G&,y;x’,y’;s) = ( 2 u  + 1X2b + INS, + St - s )  , 

t = O  k=O 

00 - 4 c o s h ( r ’ c )  sinh(y ’&) cosh(x&)sinh(y&) 
Geo(x,y;x’,Y’;s) = ~ ~ ( 2 a  + 1X2b + INS, + s, - s) Y 

f = O  m=O 

m 00 4sinh( x’G) cosh( y’ A) sinh(x&)cosh(y&) 
G&,y;x’,y’;s) = Tx  

n = O  k=O E,(% + lX2b + IXS, + S“ - s)  

Since  each  term  of  the  summations has a  simple  pole, the inverse  Laplace  transformation  is 
merely  a  matter  of  evaluating  the  corresponding  residues. E a  single  oscillator  at (x’,y‘) is 
detuned  at  time  zero by C locking  ranges,  there will be  a  double  pole  at s=O leading to a 
term  which is linear in time. This term  exhibits  the shift in  the  ensemble frequency due to 
the change in the  average of the free  running  fiequencies  subsequent to the detunhg of 
one oscillator.  The  overall  dynamic  solution in  such a  case is 

w s  x x’, y’; 7) = Cr 
(2a + 1)(2b + 1) u(r) 
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It  should  be  noted  at  this  point  that  the  series in the  above  expression  diverge to infinity  at 
the  location of the  detuned  oscillator.  This  is  an  artifact  caused by the  representation of 
the  detuning  distribution by a  spatial  Dirac  delta hnction. A more appropriate 
representation  is  a  square  pulse  covering  one  unit  cell  centered  at  the  detuned  oscillator. 
The  phase  distribution  corresponding to this  representation  can be  obtained fiom the 
above  solution by integration  over  the  unit  cell.  This  multiplies  each  of  the  terms of the 
series by a sinc hnction of  each  of  the  summation  indices.  The  solution  then  becomes 

1-1 
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This solution,  excluding  the  term  linear in time,  evaluated  for  a 21 by 21 array  with  the 
oscillator  at (5,2) detuned by one locking  range is shown in Figure 2 for  a  sequence  of 
times  beginning  at  one  inverse  locking  range  after  the  detuning  and  ending  at  infinite  time. 

From (22) or (23) one can  infer that, in the  general  case,  the  response  time of the  array to 
detuning of one  oscillator, which corresponds to the  pole  closest to the origin, is given  by 

1 (247 + 1)’(2b + 1)’ 
To =- 

x’ [ ( 2 a  + 1)2 +(2b + I)’ 1. 
If the  detuned  oscillator  lies  on  the y axis (center  line  of  the  array),  this  result  becomes 

1 [ (247+1)’(2b+1)* 
x’ (2 + 1)’ + 4(2b + 1)’ I To = - 

Similarly, if the detuned oscillator  lies on the x axis 

1 [ (2U+l)’(2b+1)’ 
K’ 4(2 + 1)’ + (2b + 1)’ I -  To = - 

Finally,  if one detunes the center  oscillator 

7 3. (2 + 1)’(2b + 1)’ 
4z’ (247 + 1)’ + (2b + 1)’ 

To = - 

AU of  these  time  constants are roughly  proportional to the  number  of  elements in the 
array. 

IV. BEAMSTEERING IN TWO DIMENSIONS 

Beamsteering  requires  that  the  aperture  constant  phase  surface  be  planar  but  with  normal 
tilted  with  respect to the normal to the  aperture.  The beam  is  directed  normal to this  tilted 
constant  phase  surface  and is thus  steered  away  from the aperture normal direction.  To 
obtain  such an aperture phase  distribution,  consider  the  following  oscillator  tuning 
function. 
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The  dynamic aperture phase  behavior  resulting  from  this  tuning  can  be  obtained  by 
integrating  the  source  fbnction  corresponding to (28) (the quantity in square  brackets) 
multiplied by the  Green's  fbnction (20) over  the  area of the  array.  The  result  is 

Note  that  the  Dirac  delta kc t ion  representation of the detuning  distribution  has  again 
been  used here.  Since no artifactual  infinities  arise  in  this  case,  it  is  not  necessary to 
replace  it  by  the  unit  pulse  representation.  The  resulting  difference in the  solution  would 
be  nearly  negligible in that it  merely  amounts to averaging  each  summation  over  a  unit 
range of the  independent  variable  (i.e., x or y as the case may be).  However, the 
expressions for the  steady  state  phase  distribution  would  be  somewhat  more  complicated. 
Therefore,  for  simplicity of presentation,  the  Dirac  delta  function  representation is used. 

In  steady state,  the  exponentials in (29) are  zero and the remaining  summations can be 
evaluated in closed form to yield 
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+ + ”9 
2 b + l  

ly-d2/  dl+  y2 
2b+1 +(2b+1)2 

This expression  can also be  written  in  the form 

&x, y;  r )  = ( + 

+ 
2a+l  2b+1 

which  indicates more clearly  that  symmetric  tuning gives rise to quadratic  phase 
distributions  while  antisymmetric  tuning  leads to linear  phase  distributions. In fact, if the 
constants  are  chosen  such  that, 

c, = -c2 = “c , 
d , = - d , = - d  , 
Qx, = -ax2 = -ox , 
n =-a =-n, , 

XI xz 

the  steady  state  result  reduces to 
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which  represents a tilted  planar  phase  distribution appropriate  for  beamsteering  wherein 
R, controls  the  phase  slope in the x direction  and G I y  controls  the  phase  slope in the y 
direction.  Finally,  it  is  noted  that  these  steady  state  solutions  can  be  obtained by direct 
solution  of  the  differential  equation  with  the  time  derivative  term  set  equal to zero.  The 
procedure  then  becomes  analogous to that  used in electrostatics  as  described  previously 
[3][4]. The detuning  plays  the  role of electrostatic  charge  density  and  the  phase  plays  the 
role of electrostatic  potential. 

Figure 3 illustrates  the  behavior  of  the  aperture  phase of a  two-dimensional  array  under 
detuning of the  perimeter  oscillators in such  a  manner as to steer  the beam. This  is 
obtained  from  the  above theory by setting c=a,  d=b,  and 

h 
;z 
h 
R 

= 27r -sin So cos #o 

Q,, = 2z -sin So sin #o 
(34) 

where h is the element  spacing of the  radiating  aperture, h is  the fiee space  wavelength, 
and coordinates (00, $0) denote  the  desired beam direction in spherical  coordinates  with 
polar axis n o d  to the  array. In the case shown,  detuning  appropriate to e0=300 and 
$0=-11Oo is applied at r=O and the  sequence  of  plots  shows  the  dynamic  behavior  of  the 
aperture  phase as it  evolves  toward  the  steady  state  distribution  shown in the  last  plot of 
the  sequence.  Figure 4 shows  this  same  steering  transient  in  terms of the  beam  peaks, 
indicated  by the  dots, and the  three dB contours,  shown  as  the  closed  curves, as they 
evolve  subsequent to detuning of the  perimeter  oscillators. Note that  the beam shape 
changes early in the  transient  period  due to the  phase  aberration  arising  across  the 
aperture as the  oscillators  readjust to the new tuning. This results in a  temporary 
reduction in gain as indicated  in  Figure 5 which  shows the  array  gain as a  function of time 
during the transient  period.  For  typical GHZ range  oscillator  locking  ranges of tens of 
MHz, this  transient  period will  be  on  the  order of a  few  microseconds.  Lastly,  Figure 6 
illustrates  a  sequence of four  detunings  applied in rapid  succession  and  corresponding to 
four  steered  beam  positions. Note that  significantly greater beam  shape  distortion  is 
evident  during  the  transient  period  when  the  beam  is  steered from one off axis position to 
another  compared  with  that  arising  when  the beam  is steered to or  from  the  array  normal 
direction. 

. 
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IV. CONCLUDING REMARKS 

Arrays  of  coupled  electronic  oscillators  have been proposed  as  a  means  of  controlling  the 
aperture phase  of a phased  array  antenna. A theoretical  formalism  developed  in  the 
context  of  one  dimensional  arrays  has  been  extended in the  present  work to two- 
dimensional  arrays  and  provides a  convenient  means of analyzing the phase  dynamics of 
such  arrays  and the resulting  radiated  beam  dynamics.  Computational  evaluations  of  the 
analytic  solutions  for  phase  and  gain  have  been  used to illustrate  the  transient  behavior to 
be  expected  when  moving  the  beam  fiom one angle to another.  The  results  indicate  that 
the hndamental time constant  of  such an array  is  roughly  proportional to the number  of 
oscillators. 

The  fact  that  the  phase  difference  between  adjacent  oscillators  is  limited to ninety degrees 
may seem to limit the beam steering to less than thirty  degrees  for  half  wavelength 
spacing.  However,  aside  fiom  the  obvious  method of decreasing the electrical  spacing of 
the radiating  elements [ 11, two possibilities  exist  for  expanding  this  limit.  One  may  radiate 
the  second  harmonic of the  oscillator  signal  thus  effectively  doubling  the  available  phase 
shift. Alternatively,  one  may  double the phase shift by  radiating  the  signal fiom only  every 
other  oscillator.  Both  techniques  extend  the  scan  range to endfire.  The  last  option, of 
course,  quadruples  the  required  number  of  oscillators for a  two-dimensional  array. 

It appears  that  the  beamsteering  approach  treated  here  holds  promise for greatly 
simplifjrlng the  required  control  system  and  for  reducing  the  overall  parts  count  in 
beamsteering  arrays. 
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Figure Captions 

Figure 1 .  Boundary  condition  artifice for a two-dimensional  oscillator array. 

Figure 2. Phase  dynamics for one  oscillator  step  detuned  at  time  zero. 

Figure 3. Phase  dynamics  during  beam  steering. 

Figure 4. Antenna  beam peak and three dB contours. 

Figure 5. Antenna  gain  during  beam  steering. 

Figure 6.  Sequential  beam  steering. 
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Figure 1 .  Boundary condition  artifice  for a two-dimensional  oscillator array. 
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Figure 2. Phase  dynamics  for  one  oscillator  step  detuned at time  zero. 
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Oscillator Phases 
Two Dimensional Array 

Edge oscillators detuned for beam steering. 
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Figure 3. Phase  dynamics  during beam steering. 
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Figure 4. Antenna  beam peak and three dB contours, 
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Figure 5. Antenna gain during beam  steering. 
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Figure 6. Sequential  beam  steering. 
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